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1. Introduction

When Etherington (2) introduced linear commutative non-associative
algebras in connection with problems in theoretical genetics, he pointed out
that various sequences of elements in these algebras represented different
mating systems. In all such systems it was however assumed that the genera-
tions did not overlap, and this restriction has been kept in later work in this
field. In this paper we treat sequences which make it possible to find the prob-
ability distribution in successive generations in a discrete time model where
the generations may be overlapping. We also consider idempotents in genetic
algebras and outline how the method used on the overlapping generation
sequence may be applied to other sequences.

Unless otherwise stated all algebras considered have the complex numbers
as the scalar field. Capital letters are used for all algebra elements.

2. Classification of algebras considered in genetics

Etherington (2) defines a baric algebra to be one that admits a non-trivial
homomorphism w to the scalar field, w is called the weight function. Let the
equation of lowest possible degree connecting the principal powers GJ = GJ~1G
of the general element G in the baric algebra s/ be

G r +0 1 G r - 1 + ... + 0r_1G = O. (2.1)

If 0l5 02, ..., 0r_! only depend on the weight w(G) of G, then si is called a
train algebra (2). For elements with weight 1, it is often convenient to factorise
(2.1) formally:

Here 1, Xu ..., Ar_2 are the principal train roots.
Our main interest will be in what Gonshor (7) has defined as genetic

algebras, si is a genetic algebra (from now on written GA) if there exists a
basis Co, Cu ..., Cn with multiplication table given by

CiCj= £ yiJkCk, (2.2)
k = 0
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where
0) 7ooo = 1; 00 yojk = 0 for k<j, j = 1, 2, ..., n\

P ) lijk = 0 for k ^ max (/,./), *»7 = 1» 2. •••> «• (2-3)
Then si is baric, and necessarily w(C0) = 1, w{Cj) = 0 for j 2: 1. A special
train algebra (abbreviated to STA) is a baric algebra where the nilideal con-
sisting of elements with weight 0 is nilpotent, and where all powers of the
nilideal are ideals. It follows from the treatment in (4) that a STA is always a
GA, and that a GA is a train algebra. Furthermore, according to Theorem 2.1
in (7), the definition of a GA given above is equivalent to the one given by
Schafer (13).

A basis in a GA giving a multiplication table of the form (2.3) is called
canonical, and the scalars y0oo = 1> you> •••> Vonn

 a r e the train roots. They make
up the set of principal train roots (6), perhaps with higher multiplicities,
except for \ that can be a train root without being a principal root. It is
easily seen that a change of the first element in a canonical basis will not
affect the train roots, and moreover, since the train roots in each case may be
regarded as the eigenvalues of the linear transformation consisting of multi-
plication by this first element, two different bases will always give identical
train roots.

Only those linear combinations of the original genetic basis elements which
have real (and non-negative) coefficients, can be given any probability inter-
pretation, so it is natural to try to use the real numbers as the scalar field.
We would then define real train algebras, real genetic algebras and real special
train algebras. But then it is no longer true that a (real) STA is a (real) GA.
For any given real STA, the complex algebra with the same multiplication
table will however be a GA, and hence a train algebra. From Etherington's
treatment (4) it then follows that the train roots in this case will be solutions
of equations with real coefficients, and so the train roots with non-zero imagin-
ary part will occur in conjugate pairs. Hence the equation of (2.1) for this
algebra will have real coefficients. Since this equation is also satisfied in the
original real algebra, every real STA will be a real train algebra.

As an example consider the algebra si describing the usual one locus case
with three alleles Ao, Au A2, when during one generation Ao certainly mutates
to Au At to A2 and A2 to Ao. The multiplication table is

A2
0 = Al; Al=A2; A\ = A0; A^

With a new basis consisting of
); Dt = Ao-A^ D2 = A^-A2,

the only non-zero products in the multiplication table are

Dl = Do; D0D1=iD2; D0D2 = -
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Thus sf is a real STA, since all powers of the nilideal (Du D2) with index
greater than 1 contain nothing but zero. To establish that the corresponding
complex algebra is a GA, we pass to the basis Co, Cu C2:

C0 = (A0 + Al+A2)l3; Cx= A0^e~

Then the table can be written

C2 = Co; CoC, = i e 2 " " 3 ^ ; C0C2 = ie-2«il3C2,

other products being zero. Every G with w(G) = 1 satisfies the symbolic
equation G(G— l)(G2+iG+i) = 0, which holds in the original real algebra,
too. That it is impossible to find any basis transformation giving the form
of a real GA, follows from the uniqueness of the train roots in the complex GA.

3. Idempotents

Gonshor (6) has shown that there is exactly one non-zero idempotent in a
GA when no train root equals \. The proof is based on induction with respect
to the number of basis elements, a method related to the one we will use in
sections 5 and 7. Holgate (10) treats a more general case, and makes an asser-
tion equivalent to the following (see equation (25)). Let exactly t of the train
roots in a STA be \, with corresponding elements Cit, Ch,..., Cit in the canonical
basis. Then there is a /-parameter family of idempotents if no quantity

has any component relatively to Ch, ..., Ch.

That this statement is not true in general is seen by considering an algebra
si with basis Co, Cu C2 and multiplication given by

C0 = C0 + C1; C0C1 = %C1 + C2; C0C2=^C2,

other products of the basis elements being zero, si is a STA, C0) Cu C2

is canonical, and the condition above is satisfied with / = 1 and iY = 2. If
G = a0C0 + a1Cl+a2C2 is idempotent, then

G = G2 = a^Co + (a5 + iaoa1)

but this implies that a0 = al = a2 = 0. However, in the way suggested by
Gonshor (6), it is easily seen that the proposition above will be correct in
every GA if the further restriction is made that the t basis elements with train
roots \ should follow Co with no other elements in between.

4. Trains

Suppose that {Ga)} is a sequence of elements that can be constructed from
any given element G = G(1) in the baric algebra si. Under certain conditions
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this sequence will form a train. This concept was introduced in (2) but, as
pointed out in (5), the definition was rather vague, and a more precise formula-
tion does not seem to have appeared later. (Actually, this term should be
applied to the rule for constructing the sequence from C(1), rather than the
sequence itself.) The original definition may be interpreted as this:

{GU)} is a train if there exists an equation

G(s+1) + 01(w)G(s)+... + 0s(w)G(1) = O (4.1)

which is correct for all G = G(1) in saf, where 0,(w), ..., 0s(w) are functions of
the weight w = w(G) only.

In order to establish that particular sequences form trains, it has in practice
often been considered sufficient that (4.1) should be satisfied with constant
0i, ..., 0S for all G with w(fi) = 1:

G(s+1) + 01G(s)+... + 0sG
(1) = O; (4.2)

see for instance section 5 of (4), section 3 of (8), and (9). For sequences which
may be regarded as powers of G, it is easy to show that this condition implies
that we have a train according to the definition above, since if we insert G/w(G)
in (4.2) for general G and rearrange, we get an equation (4.1) for all G with
non-zero weight. A continuity consideration then gives that G(s+1) = 0 when
w(G) = 0. (An argument of this type is for example used to derive (4.1) for
plenary powers in section 4 of (5).)

We assume that (4.2) is the equation of its kind of lowest possible degree,
and that for all sequences considered w{G) = 1 implies that w(GU)) = 1 for
all j . Then simply by substituting

G(J+S) ) Go+.-Df ..., GO) f o r G(*+n5 Gcs)) _ f Gd)

in (4.2) we get a homogeneous difference equation for the sequence {G(j)}:

Gu+s) + 91G
u+s-1)+... + 9sG

U) = 0. (4.3)
The train equation (4.2) for the sequence may be symbolically factorised as if
the terms G(j) were powers of ordinary numbers:

G(G- l ) (G- / i 1 ) - - (G-^ - i ) = 0. (4.4)

(1 will be a symbolic root in (4.2), as may be seen by taking the image of this
equation element by element, under the homomorphism w.) When the train
roots 1, nu ..-, fis-i for the particular sequence are known in addition to the
values of G(1), G(2), ..., G(s\ then it is in principle possible to solve (4.3). We
find

G°>= t QuVl (4.5)
u = 1

where yu y2, •••, yt
 a r e t n e different values of 1, nt, ..., iis_u and Qu ..., Q,

are elements in si which are polynomials in j .
This solution is valid for all G with weight 1. However, by using (4.5) for
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G/w(G), we immediately obtain an expression for G(7) when G has any non-
zero weight. It should be noticed that in general it is not possible to use (4.1)
in a similar way to derive a difference equation corresponding to (4.3). If
we substitute Gu+'\ ..., GU) for G(s+1), ..., G(1) in (4.1), an equation is found
where the coefficients depend not only on the weight w = w(G) of G, but on j
too. This difference equation with variable coefficients cannot be solved in
the same manner as (4.3). (In the particular case of principal powers, however,
the difference equation found from (4.1) has constant coefficients.)

These considerations apply to the case where the sequence is generated by a
single element G = G(1). In section 5 we will derive sequences from a number
of independent initial elements ({//(«)} in (12) also belongs here). The original
definition might then be generalised by requiring (4.1) to hold with Qu ..., 6S

being functions of the various weights of the given elements. This seems how-
ever to be too restrictive, and we will give reasons for considering (4.2) instead
of (4.1).

Regarding sequences as plenary powers G o + 1) = G(J)G(J), or principal
powers, we may interpret as a population any algebra element with non-negative
coordinates (and at least one positive) relatively to the original basis elements.
The proper probability distribution will in each case be found by assuming
that the genotype probabilities should be proportional to the coordinates.
Thus it makes sense for the applications in these cases to use G with w(G) ^ 1.
When we pass to sequences like the one to be defined by (5.1), however, such
a use will in general destroy our probability interpretation of the mating system
represented by the sequence, and it is essential that all G connected with distribu-
tions should be normalised. This sequence will also be different in the following
respect. Even when the general expression for G(i) is known for the case where
all initial elements have weight 1, it will be impossible to deduce immediately
a similar expression given initial elements with arbitrary weight. The algebraic
treatment in the general case would have to be quite different.

Thus it seems reasonable to base our general definition of a train on (4.2),
which will be required to hold with constant coefficients for all sets of given
elements having weight 1. Even for the usual sequences of powers, the essential
equation is (4.2), not (4.1), since (4.2) gives the difference equation used.

For a train {GO)} and a particular choice Co, Cu ..., Cn of canonical basis
in a GA, assume that

G(j) = C0+ £ flyC, (4.6)
i = 1

for elements with weight 1. We will introduce the concept of a root for the
basis element Ct (with respect to {GO)}). The scalars rn, ri2, ..., riv shall be the
roots for Ct if each au defined by (4.6) may be written

«t/ = t 9iA,l (4.7)
u = 1
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where the qiu are polynomials in j . Then ai}, j = 1, 2, ..., satisfies a homo-
geneous difference equation with characteristic roots rn,..., riv. It is understood
that the sequence should not satisfy such a difference equation of lower degree.
The root riu has multiplicity miu if it is a /n,u-multiple root in the characteristic
equation. This amounts to saying that qiu in (4.7) is a polynomial in j of degree
miu—\. This rule must be modified for a root equal to 0. If 0 has multiplicity
m for Cf, then (4.7) is valid only for j ^ m +1, rn, ..., rlv now being the non-
zero roots. The multiplicity of a root in the complete algebra is defined
similarly.

5. The sequence for overlapping generations

For given algebra elements Gw, Gm, ..., G(p) this sequence is defined by

f f j = lf 2, ..., (5.1)
k = 0 h = 0

where/? is a given natural number, and bhk, h, k = 0,1, ...,p — 1, are given scalars
such that bhk = bkh, £ bhk = 1, and bOk # 0 for at least one k. If

w(G(1)) = ... = w(Gip)) = 1, then automatically w(G(J)) = 1 for all j . We
introduce the notation bh. = £ &&*• Concerning the algebra ^/, we now suppose

that it is a GA with canonical basis Co, Cu ..., Cn, satisfying (2.2) and (2.3).
The train roots y0JJ will be written as A,-. Then we have

Theorem 5.1. (i) The sequence {G*J)} defined by (5.1) is a train in s&.

(ii) Co has the one and only root 1, with multiplicity 1.

(iii) For i ^ 1 we have: The roots for Ct are elements of the union of the
set of products of all pairs of roots for C, and Cs with 0 ^ t, s<i and ytsi ^ 0,
and the set of solutions of the equation

x"-2^ibp.1.x
p-1 -...-2X^0. = 0. (5.2)

(iv) The multiplicity of a root ( # 0) formed by such a product is ^ (the sum
of the multiplicities for each root) — 1. When more than one product give the
same root, the relevant multiplicity is ^ (maximum of the upper bounds calculated
in the described manner). The multiplicity of a root found from (5.2) is equal to
the multiplicity as a solution of this equation. If a root is found in both ways,
we get an upper bound by adding the two bounds. A product equal to 0 will give
a multiplicity equal to maximum multiplicity of '0 for the factor roots.

(v) The set of roots for s4 is the union of all sets of roots for the elements
in the basis. The multiplicity is given by the maximum multiplicity for this
root for Co, Cu ..., Cn.

Proof. We consider arbitrary G(1), ..., G(p) all having weight 1. Then (ii)
is trivially correct. We will now prove by induction with respect to i that every
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atJ may be written as in (4.7) (the qiu being determined by an, ..., aip), and that
the quantities riu are given by the rules in (iii) and (iv). Assume this to be true
for i = g — \. When we insert (4.6) in (5.1) and collect the coefficients of Cg,
using the properties of the GA, we find

p— 1 9 - 1 ff—1 p—1 p - 1
a0,j+p-2*g E bk-ag,j+k= E E y>s<> E E bhkOt,j+has,J+k. (5.3)

k=0 t = 0 s = 0 h = 0 k = 0

Only C, and Cs with y,J9 # 0 give actual terms on the right-hand side of
(5.3). According to the induction hypothesis we may insert expressions (4.7)
for att J+h and aSt J+k, and after rearrangement the right-hand side of (5.3)
may be written

E E ctsuJjtJsw)J, (5.4)
t, s u,w

where the first sum is to be taken over t and s within the limits 0 ^ t, s ^ g — 1
which give ytsg # 0. c,suw is a polynomial in j of degree (mtu-l) + (msw-l).
Now (5.3) may be regarded as a usual inhomogeneous difference equation for
the sequence agJ, j = 1, 2, ..., with known right-hand side (5.4), and the corre-
sponding homogeneous equation will have characteristic equation (5.2) (with
i = g). (5.3) may then be solved in the ordinary way (see for instance section
171 of (11)), giving an expression (4.7) for agJ, with rgu constructed in one or
both of the two manners described in (iii). The sequence agj will also satisfy
a homogeneous difference equation where the characteristic equation has all
rgu as solutions. If rgu is only formed as a product rtursw the degree of the
polynomial qgu will be mtu + msw—2. The characteristic equation just mentioned
must then in general have rgu as (mtu+msw— l)-multiple root. If rgu is only
obtained from (5.2) with multiplicity m' then qgu is of degree m' — 1, and rgu

will have to be a solution of multiplicity rri of the characteristic equation. It
is also seen that the boundaries may be added when rgu is found in both ways.
This completes the induction.

The solutions atj for the basis elements may now be put together to a solution
for the complete GU). We find that G(J) will satisfy a homogeneous difference
equation with all riu as characteristic roots, the multiplicities being at least as
great as the corresponding multiplicities for each basis element. This proves
(i) and (v).

In particular cases some of the coefficients in the polynomials ctsuw in (5.4)
may turn out to be 0. For this reason the rules above for multiplicities only
give upper bounds. If we had regarded all roots with multiplicity m > l as
if we had m different roots, used (iii) instead of (iv), and in the end estimated
the multiplicity of a root by counting the number of times it occurred, we would
find greater upper bounds than those obtained from (iv); when we ought to
have mi+m2—l, we would find m1w2.

Now assume that s4 is a GA defined over the real numbers instead of the
complex ones, and that all bhk are real. If (5.2) still has complex solutions, then
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these must appear in conjugate pairs. When we now pass to the corresponding
complex algebra, as a consequence of (iii) we find that all roots with non-zero
imaginary part will be given in such pairs. Furthermore, because of symmetry,
when one root vanishes in (5.4) so does its conjugate, and the two will always
have the same multiplicity. The homogeneous diiference equation equivalent
to (5.3) of lowest possible degree can accordingly be written with only real
coefficients, and this will also be the case for the train equation, which is
satisfied by every G in the original real GA. Thus the theorem is valid for real
algebras, too. Difficulties will arise, though, when we write down the expression
(4.5). But here we " get rid of " the imaginary parts as usual: If yu = y = pe10,
we may substitute Rpj cos (jcj)') + R'pJ sin (]$) in (4.5) for QyJ + Q'yJ, where
R and R' are elements in the real algebra, being polynomials in j of the same
degree as Q and Q.

It may be noticed that for initial elements G(1), ..., G(p) all having weight 0,
G*-" = 0 for all sufficiently large j , since every product in the nilideal (in a
GA) whose degree exceeds a certain value will be 0.

Theorem 5.1 is easily extended to more general sequences. Almost the
same arguments apply to

Gu+P) = £ bhk(G
u+h)Gu+k))+ "Z dk(PkG

u+k)), (5.5)
h,k k = 0

when bhk and dk are given scalars with £ bhk+ £ dk = 1, and Po, Pu ..., Pp_1
h,k k

are given algebra elements with, weight 1. For each pair Ct, Cs with ytsi # 0,
the set of roots for Ct will then in addition contain the roots of C, if any Pk

has non-zero coefficient relatively to Cs, and under the corresponding conditions
the roots of Cs. The rules for multiplicity are easily modified, and (5.2) is
replaced by

x"-Xi(2bp.1. + dp_l)x
t'-1-...-U2bo. + do) = O. (5.6)

We set b = I,bhk and d = Hdk. When all bhk and dk are real and non-negative
and all | A,-1 ^ l/(2b + d), then (5.6) can have no solutions outside the unit
circle, because if | x \ > 1, then (5.6) would imply

| | g | , | I Vk k ) \ \ ? z \ \
fc = O

If | X; \<l/(2b + d), there can be no solutions on the unit circle either, and it
then follows that if 1 is a root for any Ch it must have multiplicity 1. All
other roots will have modulus less than 1, accordingly lim atj- will exist, and

so will lim GU). With P = £ dkPJd, it now follows from (5.5) that the limit
k

L for G(i) will satisfy an equation

(5.7)
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which is easily shown to have exactly one non-zero solution in this case. (For
d = 0 the last term in (5.7) is omitted. Thus sequences (5.1) will have idem-
potent limits.) These results may be considered as generalisations of Theorem
2.2 in (6).

6. Applications

The sequence (5.1) may be applied to an infinite population where mating
takes place only at given points of time, but where the generations can overlap.
We suppose that the individuals participate in mating for the last time when
they reach an age of p generations. Each time a proportion 2bhk of the crosses
are made between individuals of age p — h and p — k (for h # k; bhk if h = k).
Apart from this restriction mating is assumed to be random. GU) will now
give the distribution of genotypes among individuals born at time j , when
the distributions among the initial p generations are known, that is when
G(1), ..., G(p) are given.

For particular choices of bhk, (5.1) will reduce to cases studied before. With
p = 1, bQ0 = 1 we get the sequence of plenary powers. The sequence

H(n) = H(n-l)H(n-2)

introduced by Reiersel (12) in connection with sex-linked loci is obtained from
(5.1) with p = 1, b0l = bl0 = i. Some other special cases of (5.1) have also
been treated by Reiersel by means of differential operators (unpublished).

Using (5.5), one may imagine that in addition to the crosses between
individuals of different age, a proportion dk of the crosses at time j are made
between individuals in our sequence of age p — k and a given constant popula-
tion with distribution determined by Pk. With p = 1, b00 = 0, d0 = 1 and
Po = G(1) we here get the ordinary sequence of principal powers. Thus we
have a new proof for the fact that every GA is a train algebra.

It may be of interest to compare Theorem 5.1 used on plenary powers with
previous results in the same direction. For this sequence x = 2Xt is the only
solution of (5.2). Etherington has shown in (3) that in every train algebra of
rank 3 with train roots 1 and X, the plenary powers will form a train with roots 1
and 21. Holgate's Theorem 3 in (9) is more relevant. It is seen that our Theorem
5.1 applied to this sequence is more general than that theorem in these ways:
(i) We consider a GA instead of a STA; (ii) it is no condition that the algebra
must contain an idempotent; (iii) we drop products formed from Ct, Cs with
ytsi = 0; and (iv) we give smaller bounds for the multiplicities. For particular

n

applications, especially (iii) is important. Starting with G = £ ufii the
i = 0

proof in (9) introduces new quantities vu ..., vm making squaring of G equivalent
to a linear transformation on vl9 ..., vm. It is proved by induction that vu ..., vm

of this kind can be found, but the deductions corresponding to our solution
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of the difference equations and the construction of the roots are made sim-
ultaneously for the coordinates relatively to all elements in the basis. Thus one
might say that the proof of Theorem 3 in (9) does not fully utilise the preceding
Theorem 1. The equivalent of this Theorem 1 has been used in setting up our
equation (5.3).

7. A general sequence of powers

The same technique of induction with regard to the number of elements in
the basis may be applied to many other sequences in a GA, and so these will
form trains. As an example consider {G(J)} denned by

where (G(J))S stands for any non-associative power of Gu\ characterised by
its (commutative) shape s (1). An arbitrary factor element in the product
corresponding to s will be denoted by/. The shape s may be visualised as a
tree (or a pedigree) as described in (1) and then each such element/is represented
by a terminal node in the tree. The distance between this node and the node
/ 0 representing the final product, measured in generations (or the number of
edges along the path connecting/and/0), will be written as //(/). The maximum
value of h(f) for all / i s the altitude &(s) of the shape (1). For instance

h(X) = h(Y) = 3, h(Z) = 2,h(V) = l

in the primary shape s = 4 given by the product {{XY)Z)V.
The same notation (4.6) is used as before. We first establish a difference

equation similar to (5.3). Using distributivity, we see that (Ga))s may be
expressed as a linear combination of a number of products all having shape s,
where the factors consist exclusively of basis elements Co, Clt ..., Cn. Imagine
that all multiplications are performed and that each product is written out as
a linear combination of the basis elements. Then, because of (2.3), only those
products where all factor elements except one were equal to Co, and the
remaining one, say / , was Cg, will give any term agjCg multiplied by a scalar
(not depending on any atJ). For products of this kind we get the term A*(/)awCr

Other components relatively to Cg are obtained, but these will be of the form
ah j...aiv3 jCg multiplied by scalars, where all i, are less thang. Hence, equating
the coefficient of Cg in this expression with ag< j+1 we get a difference equation
with left-hand side

and a right-hand side depending on the values of a^ for i<g.
Now the same method of solving these equations inductively as the one

used for (5.3) may be apnjied. The roots for C; are found as certain products
of roots for basis elements with lower indices, and £ A*(/). When all roots are

known, the train equation for {GU)} may be constructed.



SEQUENCES IN GENETIC ALGEBRAS 29

One may compare this with Etherington's result in (3) for the sequences
= (GO))3 and Gu+1) = (GO))4 in the case of arbitrary train algebras

of rank 3. The train roots are then given as 1, X+2X2 and 1, X+X2 + 2X3,
respectively. In these instances £ A*(/) will be Xt + 2X2 and Xt+Xf

f

REFERENCES

(1) I. M. H. ETHERINGTON, On non-associative combinations, Proc. Roy. Soc.
Edinburgh 59 (1939), 153-162.

(2) I. M. H. ETHERINGTON, Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939),
242-258.

(3) I. M. H. ETHERINGTON, Commutative train algebras of ranks 2 and 3, / .
London Math. Soc. 15 (1940), 136-149.

(4) I. M. H. ETHERINGTON, Special train algebras, Quart. J. Math. Oxford Ser.
(2) 12 (1941), 1-8.

(5) I. M. H. ETHERINGTON, Non-commutative train algebras of ranks 2 and 3,
Proc. London Math. Soc. (2) 52 (1950), 241-252.

(6) H. GONSHOR, Special train algebras arising in genetics, Proc. Edinburgh Math.
Soc. (2) 12 (1960), 41-53.

(7) H. GONSHOR, Contributions to genetic algebras, Proc. Edinburgh Math. Soc.
(2) 17 (1971), 289-298.

(8) P. HOLGATE, Genetic algebras associated with polyploidy, Proc. Edinburgh
Math. Soc. (2) 15 (1966), 1-9.

(9) P. HOLGATE, Sequences of powers in genetic algebras, / . London Math. Soc.
42 (1967), 489-496.

(10) P. HOLGATE, The genetic algebra of k linked loci, Proc. London Math. Soc.
(3)18(1968), 315-327.

(11) C. JORDAN, Calculus of Finite Differences, 3rd edition (Chelsea, New York,
1965).

(12) O. REIERS0L, Genetic algebras studied recursively and by means of differential
operators, Math. Scand. 10 (1962), 25-44.

(13) R. D. SCHAFER, Structure of genetic algebras, Amer. J. Math. 71 (1949),
121-135.

INSTITUTE OF GENERAL GENETICS

UNIVERSITY OF OSLO

NORWAY


